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Abstract. In this study new numerical models were developed and applied to the analysis of the 
performance of precision optical encoder operating in non-ideal environments. Numerical 
simulation and experimental examination of imperfections in the generated waves were carried 
out to examine the influence of various factors affecting the encoder accuracy. 
Keywords: optical encoders, vibration analysis, fringe pattern, numerical model. 

1. Introduction 

Linear and angular optical encoders are precision measuring instruments often used in high 
precision machines for position detection and motion control. The accuracy and performance of 
the encoder is mostly influenced by the instrumental errors inherited in the manufacturing and 
assembly process (e.g. graduation errors, eccentricity) and external factors like temperature 
deviations, vibration, etc. Therefore, comprehensive analysis and quantitative estimation of such 
error sources are necessary for improvement of resolution and accuracy of such encoders as well 
as for optimization of encoder structures. 

The resolution of an optical incremental encoder is mainly determined by the quality of the 
interfering periodic structures – the scale which implements the function of measuring standard 
and scanning reticle used to generate a particular form of the output signal. The form and precision 
of output signals depend on the scheme of the interaction of both structures. As a result of the 
superposition of two straight line grating structures an interference pattern (Moiré fringes) can be 
observed. The position, pitch and form of combinative interference lines are determined by the 
mutual position and the parameters of the two gratings. The grating combination performs the 
scaling function by transforming the small measured displacements to much larger proportional 
displacements of Moiré fringes.  

In general, classical geometric and spectral approach can be used for investigation of the Moiré 
phenomenon [1-6]. Spectral (Fourier) approach based on the duality of functions in time or space 
domain and their spectra in the frequency domain related by the Fourier transform may solve 
numerous grating interaction problems and enables us to analyze the signals produced by 
interfering gratings and their superposition as well as the corresponding spectra. Application of 
Fourier analysis methods and selection of different combinations of gratings’ parameters permits 
particular simulation of required light transmission (modulation) properties of an optical encoder. 
However, possibilities of the analytical and spectral methods are limited if aperiodic or random 
grating structures (which are inevitable due to instrumental errors of the encoders) are to be 
investigated [5-6]. For the analysis of such non-repetitive or random structures numerical (binary) 
models are much more practical and effective tool as they enable not only direct and ostensive 
evaluation of the superposition images of the structures but also implication of other error sources 
like geometrical, dynamic or thermal errors in the numerical model. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2016.17132&domain=pdf&date_stamp=2017-02-15
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2. Moiré effect in optical encoders 

The Moiré images appearing due to the superposition of non-periodic or random structures are 
referred to as Glass images. Differently from Moiré pattern of periodic structures which overlay 
the whole interacting structure, the Glass patterns are concentrated around a certain superposition 
point of superposition and are fading out as the distance from the point is increasing. Though 
formally the Fourier techniques can be applied for the analysis of Glass images, they often appear 
as of no particular efficiency in practical applications [4, 5].  

Optical encoders based on moiré effect with traditional coarse gratings (diffraction effects can 
be ignored) may be modelled by transmittance (or reflectance) functions of these gratings [1-2, 7]. 
Monochromatic image as well as the grating structure can be represented in the image domain by 
a transmittance function at any point (ݕ ,ݔ) obtaining values in the range between 0 and 1, which 
correspond to opaque and transparent lines respectively. The result of the combination of the 
“black” and any other shade is the “black” value which validates the multiplicative model for 
monochromatic images. The superposition of monochromatic images provides the resultant image 
as the product ℎ(ݔ, (ݕ = ℎଵ(ݔ, (ݕ × ℎଶ(ݔ, (ݕ × … × ℎ௠(ݔ, (ݕ  of transmittance functions of 
individual images or grating structuresℎଵ; ℎଶ; ℎଷ,…, ℎ௠. The Fourier transform ܴ(ݑ,  of the (ݒ
product of functions is obtained as the convolution: ܴ(ݑ, (ݒ = ܴଵ(ݑ, (ݒ ∗∗ ܴଶ(ݑ, (ݒ ∗∗ … ∗∗ ܴ௠(ݑ, (1) ,(ݒ

of Fourier transforms ܴ௜(ݑ, ݅ ;(ݒ = 1,…, ݉ of individual functions ℎଵ; ℎଶ; ℎଷ,…, ℎ௠ where ݒ ,ݑ 
are the spectral plane parameters.  

In the optical encoders the transmittance function characterizes the changes of the light flux 
passed through the interfering gratings as: 

߬ = ΦΦ଴ = 1ܵ ඵ ,ݔ)ℎଵܧ ,ݔ)ℎଶ(ݕ ஶݕ݀ݔ݀(ݕ
ିஶ , (2)

where Φ is the light flux passed through the grating combination, Φ଴  is the light flux of the 
incident on the scanning grating (window), ܧ is the irradiance created by the incident light, ܵ is 
the area of the scanning window.  

The general analytical case of the light signal generated by interaction of two graduations, 
where the scanning grating moves in the ܱݔ direction, can be expressed as [8]: 

߬ = ଷߨ1 ∙ ߱ଶℎݎ ෍ sin ଵ݇ஶ߬ߨ݇
ିஶ ∙ sin ቂ݇ߨ ܽଶ߱ (cos ߮ + sin ߮ tan ቃ݇(cos(ߤ ߮ + sin ߮ tan (ߤ ∙ sin ൬݇ߨ ℎ sin ߮߱ cos ൰݇ߤ sin ߮

      × sin ቀܰ݇ߨ ݎ߱ cos ቁܰݒ sin ቀ݇ߨ ݎ߱ cos ቁݒ ݁௝௞ଶగఠ (௫ା௫బ), (3)

where ܰ is the number of transparent sectors of scanning grating within the considered range, ݎ – 
the distance between the centres of adjacent transparent sectors of the scanning grating, ℎ – height 
of transparent sectors (equal to the height of the window of the analyzing diaphragm,  ݓ௫ = ߨ2 ௫ܶ⁄ = ݇ ߨ2 ⁄ଵݓ ௬ݓ ; = ߨ2 ௬ܶ⁄  – spatial frequencies, ௫ܶ  and ௬ܶ  – periods of spatial 
harmonic components along ܱݔ and ܱݕ axes correspondingly, ݇ – integer number of a harmonic 
component, ݔ଴  – initial displacement of the scanning grating in ܱݔ  direction (usually  ݔ଴ = 0), ߱, ߱ଵ, ߱ଶ – pitches of interacting grating structures, ܽଶ – the width of the transparent 
sector of the grating, ߮ – inclination angle if the scanning grating respectively to ܱݕ axis, ߤ – 
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inclination angle of the end of line of the scanning grating with respect to the analyzing diaphragm 
(usually ߤ  .axis ݔܱ inclination angle of the centre lines of the scanning grating with respect to – ݒ ,(0 =

The obtained limit values of the transmittance function may be used for determining the depth 
of modulation m of the combination of both graduations as: ݉ = ߬௠௔௫ − ߬௠௜௡߬௠௔௫ + ߬௠௜௡. (4)

Thus using the methods of Fourier analysis and selecting proper parameters of grating and 
analyzing diaphragm a desired transmittance function of the grating combination, as well as, the 
depth of modulation can be obtained. 

Such methods are suitable for determining the properties of regular grating structures. 
However, for the analysis of non-regular and random grating structures (with which is necessary 
to deal with during investigations of the influence of the transducer errors on generated 
measurement signals) the methods based on Fourier analysis has limited performance. They 
enable the direct visual and mathematical analysis of images of grating superposition. 

2.1. Light modulation by interfering gratings 

The numerical simulation model of light modulation is based on the direct binary 
representation of the grating geometry by a binary matrix (BM) where opaque and transparent 
lines are represented as “0” and “1” values as shown Fig. 1. The location of ones and zeroes in the 
matrix is in one-to-one correspondence with the geometrical view of the graduation lines. Each 
position in a row of the matrix represents the distance ߱ ఠܰ⁄  in the horizontal direction, and each 
row of the matrix represents the distance ℎ ௛ܰ⁄  in the vertical direction.  

 
a) 

 
b) 

Fig. 1. Numerical models of vertical a) and oblique grating lines b) represented  
by binary arrays and their main characteristics 

The discretion of “dark” and “transparent” junction lines depends on the number of bits in BM 
designed for representation of a unit of length. The position errors in the horizontal (width) and 
vertical (height) directions can be obtained as: 



2298. ERROR MODELLING OF OPTICAL ENCODERS BASED ON MOIRÉ EFFECT.  
ALGIMANTAS BARAKAUSKAS, RIMANTAS BARAUSKAS, ALBINAS KASPARAITIS, SAULIUS KAUŠINIS, AURIMAS JAKŠTAS 

 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. FEB 2017, VOL. 19, ISSUE 1. ISSN 1392-8716 41 

ఠߝ = ߱2 ఠܰ ௛ߝ     , = ℎ2 ௛ܰ. (5)

Each graduation is characterized by their light flux transmittance. It is assumed that the opaque 
lines are completely lightproof and the bright lines are ideally transparent for the light flux. Then 
the transmittance function of a grating can be calculated as: ߬ = ܽ ∙ sin߮߱ , (6)

where ߮ is the inclination angle of the graduation lines against the horizontal line as shown Fig. 1. 
In the simulation model the interaction of two interfering gratings is presented as the logical 

sum of the two BM representing a combined result as: ܣ = ଵܣ ∨ ଶ. (7)ܣ

The combined transmittance of a certain interaction of two graduations is obtained as a ratio 
of the number of “ones” elements over the total number of the elements in the BM representing 
the interaction matrix Eq. (7) of graduations as: 

߬ ≈ ∑ ݅௔೔ୀଵఠܰܮఠ߱ + ௛ܰܮ௛ℎ . (8)

There are several common schemes of gratings’ interaction:  
• Interaction of gratings with vertical lines and referred further as an obturative interaction. It 

can be regarded as a marginal case of the general moiré pattern applied in optical incremental 
encoders. 

• Interference of gratings at ߮ ≠ 0 where inclined moiré fringes are generated, as shown Fig. 1. 
It is important to note that Eq. (8) remains valid for any value of ߱ ఠܰ⁄  and ℎ ௛ܰ⁄  which 

determine the distance corresponding to one binary position in the BM in horizontal and vertical 
directions. 

The BM representation of the grating is obtained directly from the graphical images of the 
grating micro-geometry represented on the computer monitor as enlarged many times. Thus 
graduation errors and deviations of the positions of graduation lines caused by external factors 
(e.g. temperature deformations and/or vibrational displacements) can be introduced by entering 
zeroes and ones at the appropriate positions into BM [9, 10]. Position or inclination angle 
deviations, non-uniformity of graduations’ width, changes of the measuring point position in time 
due to structural vibrations, etc. are represented by plotting the profile of the grating on the screen 
and filling the obtained areas with a color. The interaction of both gratings is modeled by 
superimposing two graduation structures one upon another in the same image. In case the images 
are black-white, the interference pattern of both gratings [5] is simulated using the graphical 
processing capabilities of the computer monitor. The accuracy of representation depends on the 
resolution of the monitor screen which was 1920×1200 pixels in this research. Taking into account 
the geometry and shape of the grating as well as the area on the monitor screen designed for the 
grating image, this corresponds to ~72 pixels per single graduation pitch in the horizontal direction 
and ~600 pixels per graduation height. The values ܰఠ and ௛ܰ are obtained automatically. 

3. Modelling of the errors of the optical angular encoder 

Geometrical errors inherited in the manufacturing process of the scale as well as ones acquired 
during the assembly are the main factors which are influencing the accuracy of the encoder. 
Therefore, a simulation model for the analysis of the influence of the encoder disc eccentricity 
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and vibrations of disc center has been developed. The scheme of the geometric quantities which 
enables to determine the grating line position error is presented in Fig. 2.  

 
Fig. 2. Calculation scheme for actual position of a grating line and resulting line position error 

The reference line is (0, 0)-(0, ܴ), thus the rotation axis (0, 0) and measurement window (0, ܴ) 
relative position and orientation are regarded as fixed in space and time. In case of Moiré grating 
interaction it is assumed that the grating lines in the window are inclined at angle ߮, however, the 
bottom line of the window is always horizontal. Ideally geometry of the transducer the center of 
the disc should always coincide with the rotation axis (0, 0) and a certain grating line (depicted by 
a thicker dark line in Fig. 2) can be observed at the center of the measurement window at a certain 
time. However, any misalignment of gratings and geometrical inaccuracies will cause 
measurement errors that can be defined by: 

• Inaccuracies of the scale and window determined by random deviations of the grating lines 
positions with respect to their nominal positions;  

• Eccentricity of the scale and/or rotation axis that can be treated in the same way in terms of 
the eccentricity of and ideal circle made of grating lines with respect to the rotation axis. Due to 
eccentricity, the changes of the orientation of grating lines within the window may occur (angle ߙ), as well as, another grating line can be seen in the center of the window when compared with 
the case of zero eccentricity. This means that during the rotation of the disc erroneous number of 
grating lines passing through the window may be counted and therefore the disc rotation angle 
evaluation may be incorrect; 

• Elastic vibrations of the body of the transducer that may cause the relative displacements of 
the window and the disc center. In this model the components of vibrations are represented by an 
additional displacement of the disc center as ൫ܽ௦௫, ܽ௦௬൯ sin(Ωݐ) + ൫ܽ௖௫, ܽ௖௬൯ cos(Ωݐ) where Ω – 
vibration frequency, ൫ܽ௦௫, ܽ௦௬൯ , ൫ܽ௖௫, ܽ௖௬൯  – sine and cosine components of the vibration 
amplitudes in the directions of Cartesian axes.  

Such geometrical inaccuracies may be generalized and regarded as time dependent position of 
the center of a circular grating: (−ߜ sin ,ߛ ߜ cos (ߛ + ൫ܽ௦௫, ܽ௦௬൯ sin(Ωݐ) + ൫ܽ௖௫, ܽ௖௬൯ cos(Ωݐ), (9)

where ߜ – constant eccentricity, ߛ =   .rotation angle of the grating, see Fig. 2 – ݐ߱
It is obvious that the eccentricity errors will change in time due to the rotation of the disc and 

due to elastic vibrations. The Fourier spectrum caused by such errors is obtained by simulating 
the grating interaction during the full rotation cycle of the disc. The grating line orientation error 
that is obtained as: 

ߙ = arccos Ԧܽ ሬܾԦ‖ Ԧܽ‖ฮሬܾԦฮ, (10)
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where Ԧܽ = (0, ܴ), ሬܾԦ = (0, ܴ) − ߜ−) sin ,ߛ ߜ cos (ߛ − ൫ܽ௦௫, ܽ௦௬൯ sin(Ωݐ) − ൫ܽ௖௫, ܽ௖௬൯ cos(Ωݐ). 
The error of the position of the grating line within the window is calculated: ݏ ≈ ܴ ∙ (11) .ߙ

It is assumed that the window is very narrow compared with the grating circle radius and 
orientation of several adjacent grating lines is approximately the same.  

Fig. 3 and 4 present the light flux signals (left) and the calculated angular displacement error 
(right) correspondingly in cases of just simulated eccentricity of 0.01ܴ and combined influence of 
eccentricity and vibrations with magnitude of 0.01ܴ in ݔ and ݕ axis. 

 
a) 

 
b) 

Fig. 3. a) Transmittance function of Moiré gratings during full rotation of encoder disk and  
b) calculated angular error due to eccentricity of rotation axis of the disk 

 
a) 

 
b) 

Fig. 4. a) Transmittance function of Moiré gratings during full rotation of encoder disk and  
b) calculated angular error due to combined influence of eccentricity and vibrations 

3.1. Numerical analysis of the encoder performance  

General algorithm developed for the analysis of performance of optical encoders, shown in 
Fig. 5, can be employed and it enables to determine geometrical deviations of the encoder structure 
resulting from e.g. thermal deformations, vibrations, and assembly or graduation errors. The 
influence of these deviations on the optical signal of the interfering gratings is determined by 
employing the developed modelling software which simulates the interaction of two optical 
grating as described in previous section. The input data is geometry of both gratings as well as 
geometrical deviations governed by e.g. thermally induced deformations of the gratings and the 
output result is the transmittance function characterizing the changes of the light flux passed 
through the interfering gratings. Different outputs can be used for in-depth analysis of sensitivity 
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of the encoder to possible design and assembly faults. Furthermore, information gained from 
simulated optical signals and Lissajous figures can be used for theoretical error estimation as it is 
described in [11]. 

 
Fig. 5. Algorithm of numerical modelling for analysis of interference signal of the encoder’s gratings 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 6. Lissajous figures obtained from numerical models for ideal gratings: obturative interaction a)  
and Moiré gratings b) and gratings with position deviations distributed by normal distribution  
(average value = 0, dispersion = ݀10/ܮ) for obturative c) and Moiré interaction respectively d) 

For the simulation of the grating interactions a computer program in MATLAB has been 
developed, the action of which is based on the image analysis of the grating interaction displayed 
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on the monitor screen. 
The Lissajous curves characterizing the grating interaction are obtained by representing two 

light flux signals obtained in two different measurement windows in ܱݔ and ܱݕ coordinate axes 
correspondingly. As a rule, the measurement windows are angularly displaced from each other at 
a certain angle and register two signals with phase ݊ ௥ܶ 4⁄  (i.e. sine and cosine signals), where ௥ܶ = ߱ ⁄ݒ  is the time during which the grating moves through one pitch, ݊ – integer number. In 
our research the sine and cosine signals are obtained by simulating interaction of graduations twice. 
During the second simulation the constant displacement of the moving graduation equal to 1/4 of 
the graduation period is added at each time moment.  

Fig. 6 presents the Lissajous figures obtained by simulation in case of ideal gratings and 
gratings with random errors of grating lines. Here the cases of obturative (Fig. 6(a), (c)) and Moiré 
grating (Fig. 6(b), (d)) interaction have been analyzed. Distortions of Lissajous figures are 
increasing along with increasing angle between the lines of both gratings. 

The simulated light flux signals of the Moiré grating combination at ߮ = 85° Fig. 7(a) and 
corresponding Lissajous images Fig. 7(b) in case the vibration frequency of the disc centre 
exceeds 2 and 5 times the grating frequency are depicted in Fig. 7. In this simulation 120 
measurement readings during the grating period are employed. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 7. Optical signals obtained for Moiré interaction and corresponding Lissajous figures  
when encoder is excited by harmonic vibrations with frequencies exceeding  

the frequency of the grating signal 2 times a), b) and 5 times c), d) 

3.2. Experimental setup 

For the experimental analysis of the measurement signals generated by an optical angular 
encoder an experimental test system was employed. The main objective is to determine design or 
assembly faults, an appropriate configuration that resembles that of actual performance and to 
compare the obtained experimental results with the results of numerical simulation. Traditional 
test methods can be widely improved making use of signal analysis tools; although the Lissajous 
figure is a convenient graphical method, it is not well suited to make numerical analysis of the 
data. The aim is therefore to obtain an improved method that eases the evaluation of the encoder 
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global performance and the particular signal deterioration. 
Test setup consists of the appropriate drive system which is capable to drive up the encoder up 

to speeds 13 000 rpm and the encoder system attached to the drive as shown in Fig. 8.  
The encoder signals connected to the signal recorder. A trigger signal line is established 

between the drive control and the signal recorder. The process starts when the drive begins to 
move. At this moment (through the trigger signal), the encoder signals A and B (voltages) start to 
be sampled with the specified frequency and recorded for later analysis. Later the test setup will 
be supplemented with vibration excitation and temperature measurement systems for the analysis 
dynamic and thermal behavior of the encoders. 

 
Fig. 8. Test setup for an angular optical encoder: 1 – angular encoder,  

2 – mounting bracket, 3 – encoder coupling, 4 – drive system 

 
a) 

 

 
c) 

 
d) 

Fig. 9. Experimental images of output signals of angular optical encoder and corresponding  
Lissajous figures for system without distortions a), b) and system with distortions c), d) 

The quadrature output signals obtained under correct performance of the encoder and when 
the system is affected by several distortions and their corresponding Lissajous images are 
presented in Fig. 9.  

Most often different effects (graduation errors, eccentricity caused by assembly errors or 
vibrations, etc.) appear simultaneously in the output signals resulting in a distorted Lissajous 
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image and total error in angular position estimation. Furthermore, geometrical deviations of main 
structural elements (housing, bearings, measurement and scanning gratings etc.) due to 
mechanical effects influence substantial variations of a measurement chain of the encoder and 
produce errors in the fringe patterns that are observed. Thus the relationships against the main 
metrological errors (zero-shift, amplitude ratio, phase difference, deviation from sine signal) can 
obtained from experimental images, analysis of sensitivities to individual error sources is more 
complex due to coupled effects and requires additional techniques particularly at the design stage 
of encoder systems. 

A. Barakauskas conceived the study and designed the experiments. R. Barauskas designed the 
numerical analysis algorithm and developed system models. A. Kasparaitis developed the 
experimental testing setup and conducted experiments. S. Kausinis developed methodology to 
numerical modelling of grating superposition errors. A. Jakstas carried out the experiments, data 
analysis and generalized the results. 

4. Conclusions 

The resolution of an optical incremental encoder is mainly determined by the quality of the 
interfering periodic structures. The analysis of interaction of such structures using classical 
geometric and spectral (Fourier) approach is limited due to aperiodic or random grating structures 
which are inevitable due to instrumental errors of the encoders therefore for the investigation of 
non-repetitive or random structures the developed numerical (binary) models are much more 
practical and effective tool as they enable not only direct and ostensive evaluation of the 
superposition images of the structures but also implication of different error sources in the 
numerical model. 

It has been demonstrated the proposed algorithm enable thorough estimation of measurement 
errors caused by relative displacements and mechanical deformations of the structural components 
of a precision encoder due to geometrical errors, vibration or thermal inhomogeneity of the 
encoder structure.  

Comparison of the results of numerical model of grating interaction with the known analytical 
(theoretical) results proved a good agreement between these results. The applied systematic 
methodology enabled us to optimize the performance of the optical encoder, to examine the 
influence of various factors affecting the encoder accuracy and to adjust the design of major 
components of the optical system. 
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